

Outline of Part 3

Objective: Cover the basic principles of Systems Modeling for a Renewable Energy Process and be able to model a simple system.

- Importance of Systems Modeling in Renewable Energy
- Modeling systems
 - Stream properties
 - Thermodynamic relationships
 - Unit models
- Heat integration & Pinch Analysis
 - Basic Principles
 - Composite Curves
 - The Heat Cascade and the Grand Composite Curve
- **Life Cycle Assessment**
 - Goal & Scope Definition
 - Life Cycle Inventory
 - Life Cycle Impact Assessment
- Uncertainty Analysis & The Monte Carlo Method

148

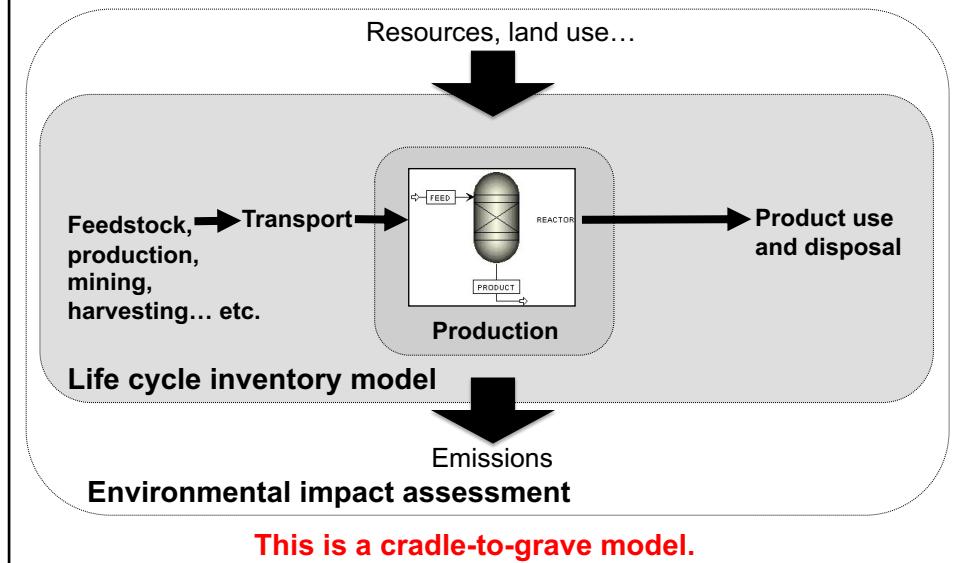
Life Cycle Assessment

With process modeling and energy integration, we can quantify matter flows, economics or efficiency.

What about sustainability?

This is a complex question... It depends on the precise definition of the product, process and the question.

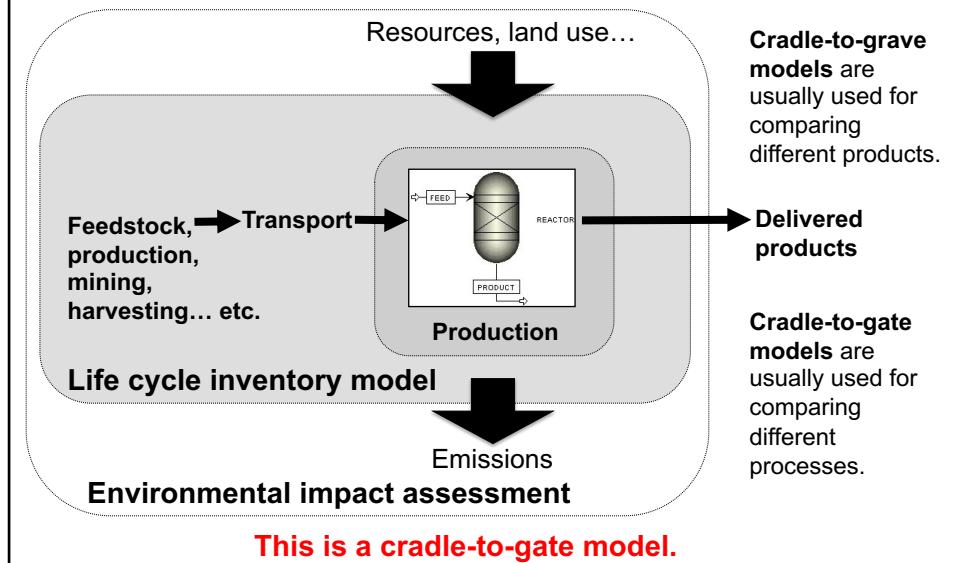
For example:


Is an electric car more sustainable gasoline-powered car?

Probably... but what if the electricity comes from a gas-fired power plant? What if the battery needs to be replaced every 3 years?

149

Life Cycle Assessment


Recall our general systems modeling approach:

150

Life Cycle Assessment

Recall our general systems modeling approach:

151

Life Cycle Assessment

Life cycle assessment is usually performed in three phases:

1. Goal and Scope Definition → This is done before modeling
2. Life Cycle Inventory → This is the bulk of the modeling
3. Life Cycle Impact Assessment → This links modeling inputs-outputs with environmental impact models

Let's look at these steps in order...

152

Life Cycle Assessment

Goal and Scope Definition

This is where various aspects of your model are defined...

A good place to start is by defining a *functional unit* (=product quantity or action that will normalize the results)

Examples of functional units:

1 MW of CH₄ produced globally

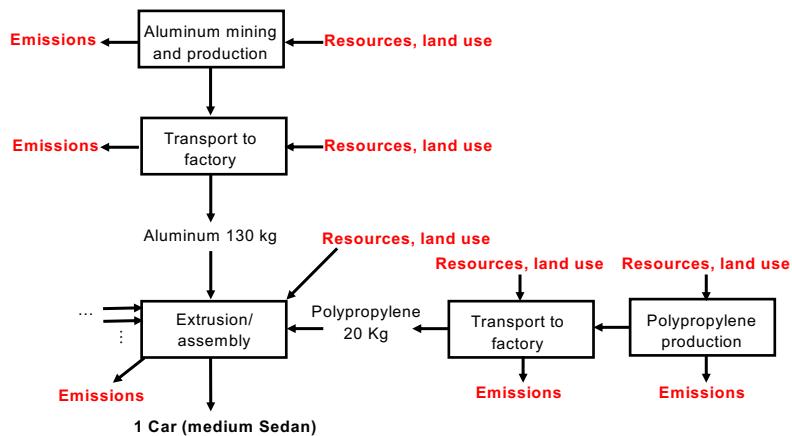
1 km driven in Switzerland

1 car used for its entire lifetime

...

→ Functional units often define scope and boundaries:

- Geographical boundaries
- Use boundaries (gate or grave)
- Assumptions
- ...


153

Life Cycle Assessment

Life Cycle Inventory

This is the modeling phase.

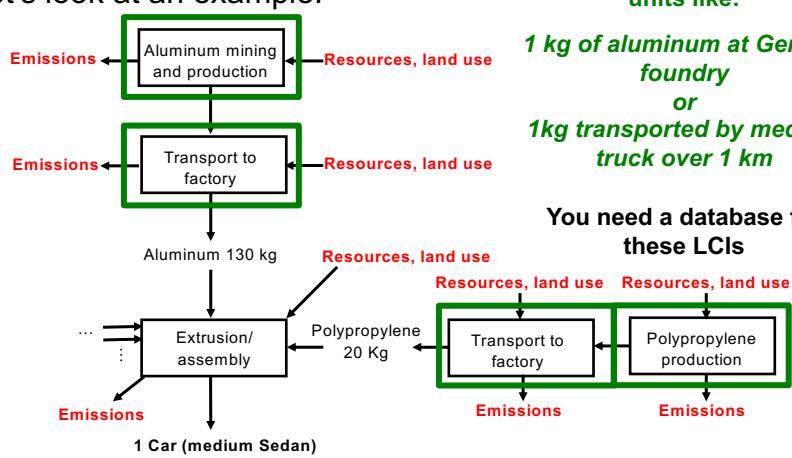
Let's look at an example:

154

Life Cycle Assessment

Life Cycle Inventory

This is the modeling phase.

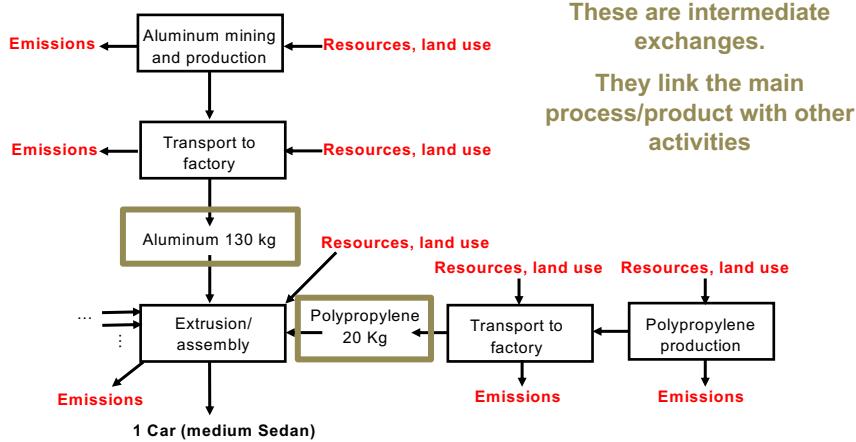

Let's look at an example:

These are activities.

They are generally the results of other LCIs with functional units like:

1 kg of aluminum at German foundry
or
1kg transported by medium truck over 1 km

You need a database for these LCIs

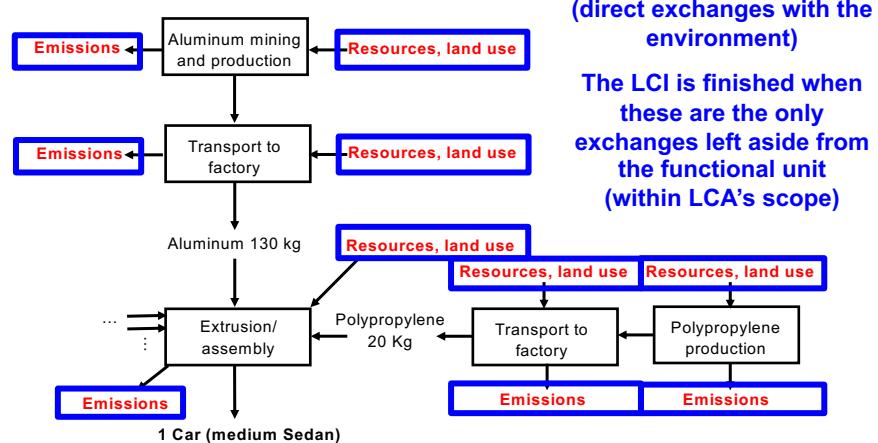

155

Life Cycle Assessment

Life Cycle Inventory

This is the modeling phase.

Let's look at an example:

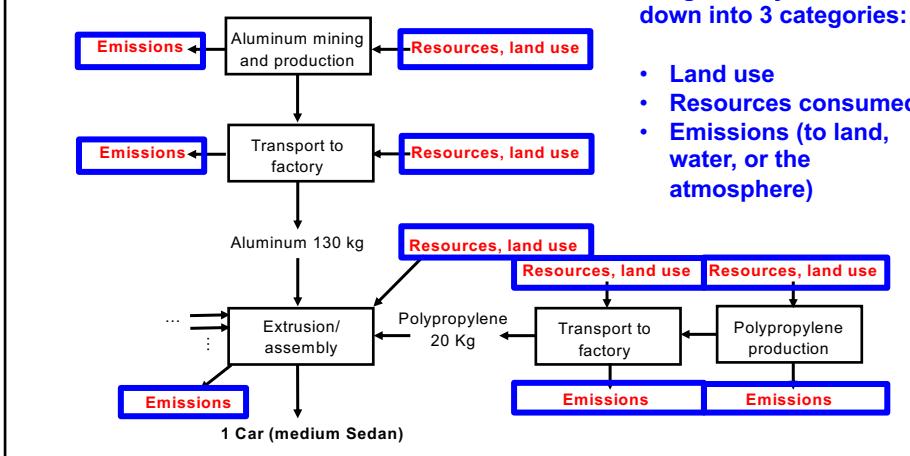

156

Life Cycle Assessment

Life Cycle Inventory

This is the modeling phase.

Let's look at an example:


157

Life Cycle Assessment

Life Cycle Inventory

This is the modeling phase.

Let's look at an example:

158

Life Cycle Assessment

Life Cycle Inventory

For the LCI, you need a database a database of activities. One of the better known databases is called Ecoinvent and was based on a Swiss Startup.

List of activities

activity uuid	activityName	geography	start date	end date	ISIC number	ISIC class	specialActivityType	
2	00093951-0c71-474-96d8-c5e0203898	treatment of used laptop computer, manual dismantling	CH	2005-01-01	2005-12-31	3830	Materials recovery	ordinary transforming activity
3	00093951-0c71-474-96d8-c5e0203898	treatment of used laptop computer, manual dismantling	CH	2005-01-01	2005-12-31	3830	Materials recovery	ordinary transforming activity
4	00093951-0c71-474-96d8-c5e0203898	treatment of used laptop computer, manual dismantling	CH	2005-01-01	2005-12-31	3830	Materials recovery	ordinary transforming activity
5	00093951-0c71-474-96d8-c5e0203898	treatment of used laptop computer, manual dismantling	CH	2005-01-01	2005-12-31	3830	Materials recovery	ordinary transforming activity
6	00093951-0c71-474-96d8-c5e0203898	treatment of used laptop computer, manual dismantling	CH	2005-01-01	2005-12-31	3830	Materials recovery	ordinary transforming activity
7	00093951-0c71-474-96d8-c5e0203898	treatment of used laptop computer, manual dismantling	CH	2005-01-01	2005-12-31	3830	Materials recovery	ordinary transforming activity
8	00093951-0c71-474-96d8-c5e0203898	treatment of used laptop computer, manual dismantling	CH	2005-01-01	2005-12-31	3830	Materials recovery	ordinary transforming activity
9	00093951-0c71-474-96d8-c5e0203898	treatment of used laptop computer, manual dismantling	CH	2005-01-01	2005-12-31	3830	Materials recovery	ordinary transforming activity
10	00093951-5e76-4f6-93ca-73b4926231fc	chlorine dioxide production	GLO	2000-01-01	2000-12-31	2011	Manufacture of basic chemicals	ordinary transforming activity
11	00093951-5e76-4f6-93ca-73b4926231fc	chlorine dioxide production	PER	1999-01-01	1999-12-31	2011	Manufacture of basic chemicals	ordinary transforming activity
12	0017x131-339-406-9877-46c7c36e5f08	polyurethane production, rigid foam	RER	1997-01-01	1997-12-31	2013	Manufacture of plastics and synthetics	ordinary transforming activity
13	0018b3b6-d07c-491-90c-1-59473bd0f0	2-nitroaniline production	GLO	2010-01-01	2010-12-31	2011	Manufacture of basic chemicals	ordinary transforming activity
14	001fa547-f5b4-d4172-9499-0758074c5353	market for used locomotive	GLO	2011-01-01	2011-12-31	3830	Materials recovery	market activity
15	0023a27-5952-476-ae3a-377dc4794715	softwood forestry, mixed species, sustainable forest management	GLO	2010-01-01	2010-12-31	0220	Logging	ordinary transforming activity
16	0023a27-5952-476-ae3a-377dc4794715	softwood forestry, mixed species, sustainable forest management	GLO	2010-01-01	2012-12-31	0220	Logging	ordinary transforming activity
17	0023a27-5952-476-ae3a-377dc4794715	softwood forestry, mixed species, sustainable forest management	GLO	2010-01-01	2012-12-31	0220	Logging	ordinary transforming activity
18	0023a27-5952-476-ae3a-377dc4794715	softwood forestry, mixed species, sustainable forest management	GLO	2010-01-01	2012-12-31	0220	Logging	ordinary transforming activity
19	0023a27-5952-476-ae3a-377dc4794715	softwood forestry, mixed species, sustainable forest management	GLO	1998-01-01	1998-12-31	0220	Manufacture of power-driven hand tools	ordinary transforming activity
20	00352317-8639-4778-96d7-ab0f1c1face	treatment of waste polyethylene terephthalate, municipal	GLO	2006-01-01	2012-12-31	4821	Treatment and disposal of non-hazardous wastes	ordinary transforming activity
21	00352317-8639-4778-96d7-ab0f1c1face	treatment of waste polyethylene terephthalate, municipal	GLO	2006-01-01	2012-12-31	4821	Treatment and disposal of non-hazardous wastes	ordinary transforming activity
22	00352317-8639-4778-96d7-ab0f1c1face	treatment of waste polyethylene terephthalate, municipal	GLO	2006-01-01	2012-12-31	4821	Treatment and disposal of non-hazardous wastes	ordinary transforming activity
23	00352317-8639-4778-96d7-ab0f1c1face	treatment of waste polyethylene terephthalate, municipal	GLO	2006-01-01	2012-12-31	4821	Treatment and disposal of non-hazardous wastes	ordinary transforming activity
24	0036e502-8e3b-43bc-b94c-4ee0350362b	electricity production, natural gas, conventional power plant	CH-HU	1990-01-01	2015-12-31	3510	Electric power generation, trans	ordinary transforming activity
25	0036e502-8e3b-43bc-b94c-4ee0350362b	electricity production, natural gas, conventional power plant	CH-HU	1990-01-01	2015-12-31	3510	Electric power generation, trans	ordinary transforming activity
26	0036e502-8e3b-43bc-b94c-4ee0350362b	market for wastewater from aluminum density board production	PER	2010-01-01	2010-12-31	3510	Electric power generation, trans	market activity
27	003b130-184-457-91a-4772-000000000000	market for wastewater from aluminum density board production	PER	2010-01-01	2010-12-31	3510	Electric power generation, trans	market activity
28	003e3695-f532-4cc-b8d4-41988008ed	lath, hardwood, raw, air drying to 20%	CA-YK	2011-01-01	2013-12-31	7510	Swanning and planing of wood	ordinary transforming activity
29	003f9313-c40-4351-a434-3b1b79199	electricity production, hard coal	NL	1980-01-01	2015-12-31	3510	Electric power generation, trans	ordinary transforming activity
30	003f9313-c40-4351-a434-3b1b79199	electricity production, hard coal	NL	1980-01-01	2015-12-31	3510	Electric power generation, trans	ordinary transforming activity
31	003f9313-c40-4351-a434-3b1b79199	electricity production, hard coal	NL	1980-01-01	2015-12-31	3510	Electric power generation, trans	ordinary transforming activity
32	00420798-e9d1-4d69-8745-990b8571db8	treatment of blast furnace gas, in power plant	BR	1980-01-01	2015-12-31	3510	Electric power generation, trans	ordinary transforming activity
33	00420798-e9d1-4d69-8745-990b8571db8	treatment of blast furnace gas, in power plant	BR	1980-01-01	2015-12-31	3510	Electric power generation, trans	ordinary transforming activity
34	00420798-e9d1-4d69-8745-990b8571db8	treatment of blast furnace gas, in power plant	BR	1980-01-01	2015-12-31	3510	Electric power generation, trans	ordinary transforming activity

159

Life Cycle Assessment

Life Cycle Inventory

For the LCI, you need a database a database of activities. One of the better known databases is called Ecoinvent and was based on a Swiss Startup.

List of intermediate exchanges

1	name	2	unitName	3	CAS	4	synonyms	5	comment
2	kraft paper, unbleached	kg							
3	transport, passenger, motor scooter	person*km							
4	green manure, Swiss integrated production, until January	ha							
5	petroleum, heavy, structure	unit							
6	interconnection, logic-type	kg							
7	Iron scrap, sorted, pressed	kg							
8	carboxymethyl cellulose, powder	kg				9000-11-7			
9	transport, freight, lorry 28 metric ton, vegetable oil methyl ester 100%	metric ton*km							
10	methane, 96% by volume, from biogas, high pressure, at user	MJ				000074-82-8			
11	alumina	unit							
12	aircraft, medium haul	unit							
13	lithium	kg				7439-93-2			
14	aluminum removed by milling, average	kg							
15	polyurethane, flexible foam	kg				9009-54-5			
16	alumina removed by turning, primarily roughing, computer numerical control	kg							
17	alumina seed, for sowing	kg							
18	machine operation, diesel, < 18.64 kW, low load factor	hour							
19	sewer grid, 4.7E10/1/year, 583 km	km							
20	lead smelter slag	kg							
21	lime, 95%P ₂ O ₅	m ³							
22	furnace, wood chips, with silo, 50kW	unit							
23	Impact extrusion of aluminum, 4 strokes	kg							
24	waste paperboard, sorted	kg							
25	cement, blast furnace slag 18-30% and 18-30% other alternative constituents	kg							
26	Impact extrusion of aluminum, cold, initial surface treatment	kg							
27	hydrochloric chloride	kg				98-87-3			
28	alfalfa grass silage	kg							
29	diesel-electric generating set, 18.5kW	unit							
30	shale brick	kg							
31	steel, I-beam frame, wood-metal	m ²							
32	wastewater from grass refinery	m ³							
33	potato starch	kg							

160

Life Cycle Assessment

Life Cycle Inventory

For the LCI, you need a database a database of activities. One of the better known databases is called Ecoinvent and was based on a Swiss Startup.

List of elementary exchanges

1	A	B	C	D	E	F
name	compar	subcompartment	unitName	cashnumber	formula	
155	Chlorsulfuron	soil	agricultural	kg	064902-72-3	
156	Choline chloride	soil	agricultural	kg	000000-48-1	
157	chromite	air	urban air close to ground	kg	007490-03-3	
158	Chromite, VI	air	urban air close to ground	kg	018340-29-9	
159	Chromium, 25.5% in chromite, 11.6% in crude ore, natural re in ground	water	ground	kg	007440-47-3	
160	Chromium, ion	water	ground	kg	016065-83-1	
161	Chromium-51	air	urban air close to ground	kg		
162	Chromium in ground	natural re in ground	kg			
163	Chloro-ethyl	soil	agricultural	kg	142891-20-1	
164	Cinnabar, in ground	natural re in ground	kg			
165	Clay, bentonite, in ground	natural re in ground	kg			
166	Clay, unspecified, in ground	natural re in ground	kg			
167	Cloudy water	soil	agricultural	kg	099129-21-2	
168	Cloudinopropargyl	soil	agricultural	kg	102512-06-9	
169	Clomazone	soil	agricultural	kg	081777-89-1	
170	Clorpralid	soil	agricultural	kg	001702-17-6	
171	Clquinonocet-methyl	soil	agricultural	kg	099607-70-2	
172	Clorotolam-methyl	soil	agricultural	kg	147150-35-4	
173	Coal, brown, in ground	natural re in ground	kg			
174	Coal, hard, unspecified, in ground	natural re in ground	kg			
175	Cobalt	air	urban air close to ground	kg	007440-48-4	
176	Cobalt, in ground	natural re in ground	kg			
177	Cobalt, in water	air	urban air close to ground	kg		
178	Cobalt-58	air	urban air close to ground	kg		
179	Cobalt-60	air	urban air close to ground	kg		
180	COD, Chemical Oxygen Demand	water	ground	kg		
181	Colemanite, in ground	natural re in ground	kg			
182	Copper	air	urban air close to ground	kg	007440-50-8	
183	Copper, 0.52% in sulfide, Cu 0.27% and Mo 8.2E-3%	natural re in ground	kg			
184	Copper, 0.59% in sulfide, Cu 0.22% and Mo 8.2E-3%	natural re in ground	kg			
185	Copper, 0.59% in sulfide, Cu 0.36% and Mo 4.1E-2%	natural re in ground	kg			
186	Copper, 0.99% in sulfide, Cu 0.36% and Mo 8.2E-3%	natural re in ground	kg			
591	Occupation, traffic area, road network	natural re land	m ² /year			
592	Occupation, unspecified	natural re land	m ² /year			
593	Occupation, unspecified, natural (non-use)	natural re land	m ² year			

161

Life Cycle Assessment

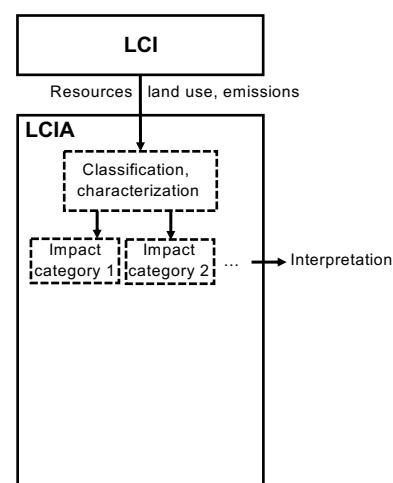
Life Cycle Impact Assessment

LCIA translates the elemental exchanges into 1 or several environmental impacts.

The difficulty: How do you compare very different exchanges with the environment

For example:

*1 kg of CO₂ emitted
in the atmosphere
(emission)*


*1 kg of aluminum ore
extraction (resource)*

162

Life Cycle Assessment

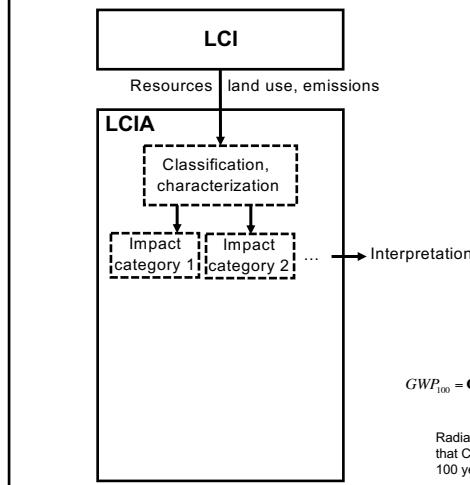
Life Cycle Impact Assessment

The basic procedure:

1. Classification: Elementary exchange are grouped into impact categories

≈ physical phenomena (global warming potential or GWP, ecotoxicity...etc.)

2. Characterization: Calculation of the category impact from the exchanges classified in this category


We use *characterization factors* that are generally based on physical phenomena (e.g. radiative forcing values for GWP)

163

Life Cycle Assessment

Life Cycle Impact Assessment

The basic procedure:

Example of characterization and weighting:

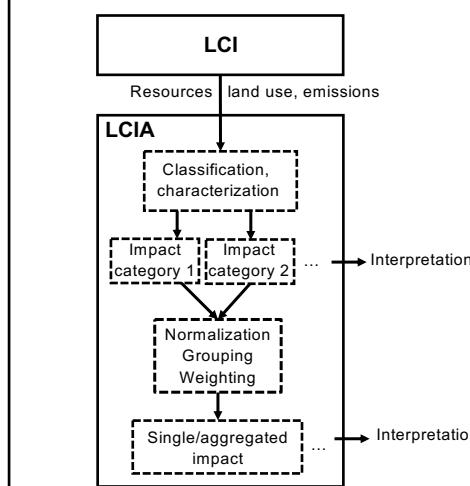
You want to calculate the GWP_{100} from a list of elementary exchanges \mathbf{L} :

$$\mathbf{L} = \begin{bmatrix} x \text{ kg } CO_2 \text{ emitted} \\ y \text{ m}^2 \text{ land used} \\ z \text{ kg } CH_4 \text{ emitted} \\ \dots \end{bmatrix}$$

Characterization and weighting would likely occur simultaneously using a single characterization vector \mathbf{C} :

$$GWP_{100} = \mathbf{C} \mathbf{L} = \begin{bmatrix} 1 & 0 & 25 & \dots \end{bmatrix} \begin{bmatrix} x \text{ kg } CO_2 \text{ emitted} \\ y \text{ m}^2 \text{ land used} \\ z \text{ kg } CH_4 \text{ emitted} \\ \dots \end{bmatrix} = x + 25z \text{ kg } CO_2 \text{ equivalent}$$

Radiative forcing values show that CH_4 has 25x more GWP in 100 years than CO_2


Result is a single impact quantified in kg of CO_2 equivalent

164

Life Cycle Assessment

Life Cycle Impact Assessment

The basic procedure:

3. Normalization/grouping /weighting: Category impacts are aggregated together into a single or several environmental impact indicators

These methods can be more or less rigorous (some are based on polling of experts). One of the more rigorous methods is based on calculating economic damages (how much multiple impacts will cost our economies).

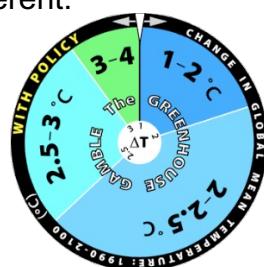
165

Outline of Part 2

Objective: Cover the basic principles of Systems Modeling for a Renewable Energy Process and be able to model a simple system.

- Importance of Systems Modeling in Renewable Energy
- Modeling systems
 - Stream properties
 - Thermodynamic relationships
 - Unit models
- Heat integration & Pinch Analysis
 - Basic Principles
 - Composite Curves
 - The Heat Cascade and the Grand Composite Curve
- Life Cycle Assessment
 - Goal & Scope Definition
 - Life Cycle Inventory
 - Life Cycle Impact Assessment
- **Uncertainty Analysis & The Monte Carlo Method**

166


Uncertainty analysis

Uncertainty estimation **must** be a key part of systems modeling because predictions of complex systems are inherently uncertain.

These two predictions are very different:

**The earth will warm
by 2.1°C by 2100**

Vs.

Uncertainty, can shape the conclusions!

Source: MIT Global Change

167

Uncertainty analysis

You can often measure or estimate the uncertainty of your inputs or parameters (e.g. crop yields in a field, accuracy of a measured temperature, purity of a chemical...etc.).

How do you measure the effect on your model?

Through error propagation:

Analytically:

$$\sigma_e^2 = \sum_i \left(\frac{\partial e}{\partial x_i} \right) \sigma_{x_i}^2$$

Dependent variable of interest e

Cumulative variance of e (a function of variables x_i)

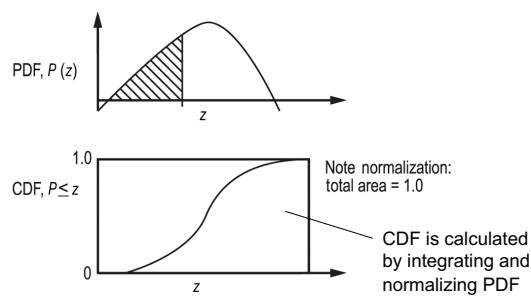
Independent variable x_i

Variance of x_i

However, for a complex system, there is no analytical function!

An alternative for such systems is the computational Monte Carlo Method...

168


Monte Carlo Method

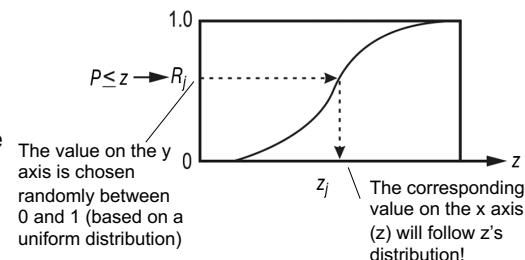
The Monte Carlo method is brute force method for calculating the unknown probability distribution of a dependent variable e from a set of known probability distributions of variables z .

This is ideal for complex system models!

It has 4 steps:

Step 1: Build a probability distribution function and cumulative probability distribution for each independent variable.

169


Monte Carlo Method

The Monte Carlo method is brute force method for calculating the unknown probability distribution of a dependent variable e from a set of known probability distributions of variables z .

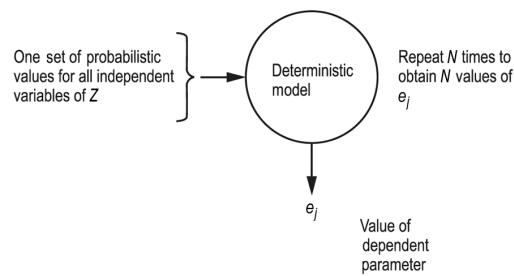
This is ideal for complex system models!

It has 4 steps:

Step 2: The cumulative distribution function is used to generate a random value of each variable z that follows its probability distribution.

170

Monte Carlo Method


The Monte Carlo method is brute force method for calculating the unknown probability distribution of a dependent variable e from a set of known probability distributions of variables z .

This is ideal for complex system models!

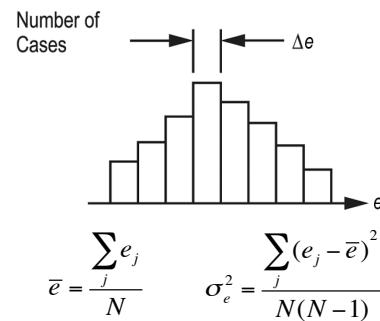
It has 4 steps:

Step 3: Do this for all independent variables and calculate the dependent variable using your model

Do this many times!

171

Monte Carlo Method


The Monte Carlo method is brute force method for calculating the unknown probability distribution of a dependent variable e from a set of known probability distributions of variables z .

This is ideal for complex system models!

It has 4 steps:

Step 4: Construct a probability distribution based on a histogram of your output data!

From this you can estimate the mean and variance of e :

172

Sustainable Energy Systems

3. Economic modeling

176

Literature

- Smith, Robin M. *Chemical Process: Design and Integration*. New Jersey: John Wiley & Sons, 2005.
- Tester, Jefferson W. *Sustainable Energy: Choosing Among Options*. Cambridge, Mass: MIT Press, 2012.
- Sinnott, Ray, and Towler, Gavin. *Chemical Engineering Design*. Elsevier, 2020.

177

Outline of Part 3

Objective: Introduce economic evaluation and the time value of money.

- Capital cost estimation
- Operating cost estimate
 - Typical operating costs
 - Externalities
- Time value of money
 - Continuous and discrete interest
 - Cash flows
 - Minimum selling price and rate of returns

178

Capital cost estimation

Easiest method: using existing data

Accounting for capacity:

This is where economies of scale come from....

$$C_Q = C_B \left(\frac{Q}{Q_B} \right)^M$$

Target capacity Q
 Equipment cost at capacity Q
 Equipment cost at base capacity
 Base capacity
 Equipment-dependent exponent M

Values of M : 0.6, average across the industry (It's sometimes called the 6/10 rule)

0.8-0.9, Processes that use a lot of gas compression or mechanical handling (methanol plant, pulp and paper, etc.)

0.7, Petrochemical process

0.4-0.5, Highly instrumented process

179

Capital cost estimation

Easiest method: using existing data

Accounting for capacity:

This is where economies of scale come from....

$$C_Q = C_B \left(\frac{Q}{Q_B} \right)^M$$

Target capacity Q
 Equipment cost at capacity Q
 Equipment cost at base capacity
 Base capacity
 Equipment-dependent exponent M

Correcting for the age of the data: Equipment costs evolve due to change in inflation, change in materials, labor, etc.

$$C_i = C_j \left(\frac{\text{Cost index in year } i}{\text{Cost index in year } j} \right)$$

Equipment cost in year i
 Equipment cost in year j
 Cost index in year i
 Cost index in year j

Common indexes: Chemical Engineering indexes, Marshall and Swift indexes (both published in *C&E News*), Nelson-Farrar Cost indexes are given in the *Oil and Gas Journal*.

180

Correction factors:	
$C_{Q,corr} = C_B \left(\frac{Q}{Q_B} \right)^M f_M f_P f_T$	
Material correction factor	Design temperature correction
Design pressure correction	
Material	Correction factor f_M
Carbon steel	1.0
Aluminum	1.3
Stainless steel (low grades)	2.4
Stainless steel (high grades)	3.4
Hastelloy C	3.6
Monel	4.1
Nickel and inconel	4.4
Titanium	5.8
Design pressure (bar absolute)	Correction factor f_P
0.01	2.0
0.1	1.3
0.5 to 7	1.0
50	1.5
100	1.9
Design temperature (°C)	Correction factor f_T
0–100	1.0
300	1.6
500	2.1

181

Correction factors:		
$C_Q = C_B \left(\frac{Q}{Q_B} \right)^M f_M f_P f_T$		
Material correction factor	Design temperature correction	
Design pressure correction		
Item	Type of process	
	Fluid processing	Solid processing
<i>Direct costs</i>		
Equipment delivered cost	1	1
Equipment erection, f_{ER}	0.4	0.5
Piping (installed), f_{PIP}	0.7	0.2
Instrumentation & controls (installed), f_{INST}	0.2	0.1
Electrical (installed), f_{ELEC}	0.1	0.1
Utilities, f_{UTIL}	0.5	0.2
Off-sites, f_{OS}	0.2	0.2
Buildings (including services), f_{BUILD}	0.2	0.3
Site preparation, f_{SP}	0.1	0.1
<i>Total capital cost of installed equipment</i>	3.4	2.7
<i>Indirect costs</i>		
Design, engineering and construction, f_{DEC}	1.0	0.8
Contingency (about 10% of fixed capital costs), f_{CONT}	0.4	0.3
<i>Total fixed capital cost</i>	4.8	3.8
<i>Working capital</i>		
Working capital (15% of total capital cost), f_{WC}	0.7	0.6
<i>Total capital cost, f_I</i>	5.8	4.4

Working capital: reserve for start-up, raw material and product inventory, cash on hand, gap between receiving materials and selling products, spare parts... etc.

182

Operating cost estimation

Typical costs:

Raw materials costs (RM) (chemicals, catalysts, etc...)

Costs from Chemical Marketing reporter, European chemical News, Asia Chemical News, Alibaba.com (The last one is free! But use large quantity offers).
 → All of these costs are variable and fluctuate with the market!

Utilities costs (U) (fuel, electricity, steam, cooling water, refrigeration, compressed air...etc.)

- Electricity and fuel costs tend to be available on public markets.
- Cooling water is fairly cheap and can usually be neglected (but is not free).
- Refrigeration, steam or compressed air can be produced in house or at least modeled as such...

Taxes (T): they are levied on gross profits (P) after allowances (i.e. deductions D) have been subtracted:

$$T = (P - D)t_R \quad \text{Tax rate}$$

183

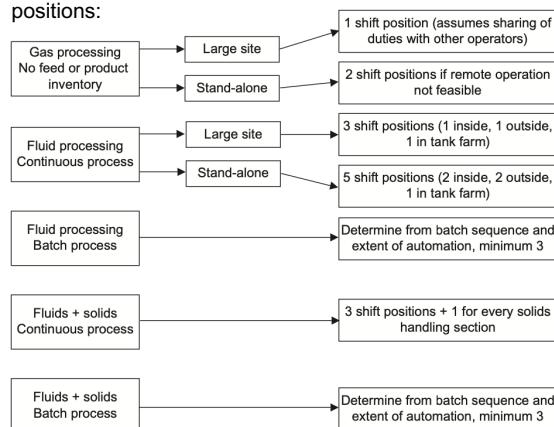
Operating cost estimation

Typical costs:

Operating labor costs (L):

Other fixed costs:

$$\text{Supervision} \approx 0.25 L$$


$$\text{Overhead} \approx 0.5 (L + \text{supervision})$$

$$\text{Maintenance} \approx 0.02 C_{\text{Total}}$$

$$\text{Rent of land} \approx 0.02 C_{\text{Total}}$$

$$\text{Plant overhead}^* \approx 0.65 (L + \text{supervision} + \text{overhead}) + \text{maintenance}$$

Quick estimate of minimum number of shift positions:

1 operator will cost you 60'000 € / year or more

*This includes, HR, R&D, IT, finance, legal, etc...

184

Externalities

Externalities in the context of building a technology are an indirect cost or benefit to an uninvolved third party.

In the context of energy, they are often used to refer to the cost of environmental damages caused by the technology (i.e. a negative externality).

Two ways of dealing with them:

- Pay for the damages (after implementation)
e.g. *SF: annualized contribution to decommissioning or a clean-up superfund*
- Impose an upfront tax (“Pigouvian tax”) to encourage abatement

e.g. $GHG\ tax = Emissions_{CO_2, Eq} \frac{\text{€}}{\text{ton}_{CO_2}}$
~80€/ton in 5/22

The weakness of either approach is that the damages can lead to increasingly catastrophic costs.

185

Total operating costs

Therefore, the total costs are:

$$\begin{aligned} \text{Total costs} = & \\ & \sum_i RM_i + \sum_j U_j + T + L + \text{Supervision} + \text{Overhead} + \text{Maintenance} \\ & + \text{Rent} + \text{Plant overhead} + SF + GHG\ tax \end{aligned}$$

These costs are future costs. They will happen during the lifetime of the project.

They are offset by sales or savings (i.e. avoided costs). The yearly difference (hopefully positive) is the yearly cash flow.

The total yearly cash flow over the lifetime can be discounted to the present value to cancel the total capital cost, which will allow us to calculate the discounted rate of return.

186

Time and money

The value of money changes depending on when it is available because any money spent now cannot be used to earn interest in a bank or investment. Money also loses value over time due to inflation. This can be accounted for by a rate of return (i).

$$F = P e^{it}$$

Conversely, the present worth of a future cash flow is:

$$P = F e^{-it}$$

This is for interest computed continuously... You are probably used to interest compounded once per year.

187

Time and money

This is for interest computed continuously... You are probably used to interest compounded once per year.

$$F = P (1 + i_d)^t$$

If you compound n times per year: $F = P \left(1 + \frac{i_d}{n}\right)^{nt}$

Similarly, the present worth of a future cash flow is (for $n=1$):

$$P = \frac{F}{(1 + i_d)^t}$$

188

19

Time and money

You can link continuous and discrete compounding:

$$i_c = \ln \left[1 + \frac{i_d}{n} \right]^n$$

E.g. for $n = 1$

$$F = P e^{i_c t} = P e^{t \ln[1+i_d]} = P e^{\ln[1+i_d]t} = P[1+i_d]^t$$

We can calculate the present value of all expenses for a process:

$$P_T = \sum_j F_j e^{-i_c t} \quad \text{or} \quad P_T = \sum_j \frac{F_j}{(1+i_d)^n}$$

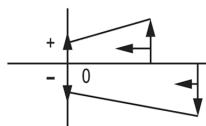
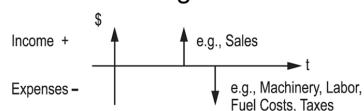
Future cash flow at
time t

We can then compute a leveledized annual rate of expenditures A for a given continuous interest i_c , such that:

$$\int_0^T A e^{-i_c t} dt = P_T$$

Lifetime of the
technology

Levelized annual
rate of expenditures

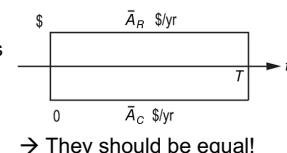


Integrating and
rearranging: $A = \frac{i_c}{(1 - e^{-i_c T})} P_T$

189

Minimum selling price or rate of return calculation

Here is the procedure to calculate the rate of return of a process or the minimum selling price of a product to make a given return:

1. Determine your cash flow (capital, operating costs, and revenue):


2. Bring all cash flows back to time zero and sum them up:

$$P_T = \sum_j F_j e^{-i_c t} \quad \text{or} \quad P_T = \sum_j \frac{F_j}{(1+i_d)^n}$$

3. Choose i_c / i_d or alternatively the minimum selling price so that: $P_T = 0$

4. If of interest, redistribute all cash flows over the appropriate time horizon to calculate leveledized annual costs and revenues:

$$A = \frac{i_c \sum_j F_j}{(1 - e^{-i_c T})}$$

190